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ABSTRACT
Vitamin D is a steroid pro-hormone, whose active metabolite binds the vitamin D receptor (VDR) which, in turn, binds to DNA sequences on

target genes as a heterodimer with the retinoid-X receptor, resulting in regulation of gene expression. The vitamin D pro-hormone can be

synthesized in the skin, in response to ultraviolet radiation; however, dietary sources have become increasingly important as a result of

cultural changes over the past few centuries. Based on its initial discovery as an anti-rachitic factor, studies of the role of vitamin D and its

receptor have largely focused on the skeleton. Investigations into the pathophysiologic basis and therapeutic responses of skeletal disorders

associated with impaired vitamin D action have led to the identification of the molecular pathways involved in hormone activation and

regulation of gene expression by the liganded VDR. These studies have also demonstrated that the skeletal actions of the VDR and its ligand are

largely redundant if normal mineral ion homeostasis can be maintained by other means. However, investigations in animal models with

tissue-specific ablation of the VDR or the enzyme required for hormone activation have demonstrated novel actions in skeletal tissues. The

active vitamin D metabolite has been shown to have both paracrine and endocrine actions in other tissues as well. J. Cell. Biochem. 111: 7–13,

2010. � 2010 Wiley-Liss, Inc.
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V itamin D is a steroid hormone that acts as a ligand for

the vitamin D receptor (VDR), a classic transcription factor,

which exerts its effects via the formation of a complex with the

retinoid X receptor (RXR). The VDR-RXR heterodimer then interacts

with DNA response elements on target genes [MacDonald et al.,

2001]. Vitamin D levels are a reflection of the synthesis of vitamin D

in response to ultraviolet B (UV-B) exposure of the skin and dietary

intake of vitamin D [Holick et al., 1980; Norman, 1998]. In the skin,

UV-B light converts 7-dehydrocholesterol to previtamin D3 [Holick

et al., 1980]; with adequate UV-B exposure the skin can synthesize as

much as 80–100% of the daily vitamin D requirement [Glerup et al.,

2000b]. There are two forms of dietary vitamin D: ergocalciferol,

which is plant based, and cholecalciferol, which is animal based.

Intestinal absorption of vitamin D occurs primarily in the small

intestine and is facilitated by the presence of bile salts [Greaves and

Schmidt, 1933]. Absorption efficiency is approximately 50%. After

its synthesis or absorption, vitamin D is metabolically activated by

an initial hydroxylation in the liver to form 25-hydroxvyitamin D

(25OHD). 25OHD, or calcidiol, is the more stable vitamin D

metabolite, thus evaluation of its circulating levels is used to assess
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vitamin D stores [Holick, 2007]. In the kidney, 25OHD undergoes a

second hydroxylation step to produce 1,25-dihydroxyvitamin D

(1,25(OH)2D), or calcitriol, the active circulating metabolite [Boyle

et al., 1972; Holick et al., 1972; Wong et al., 1972; Fraser et al., 1973].

Calcitriol can also be generated in non-renal tissue, including

macrophages and muscle [Liu et al., 2006]. This non-renal activation

of 25OHD to 1,25(OH)2D is thought to contribute to our increasing

recognition of a number of important actions of this steroid hormone

that are dependent on local activation. There is accumulating

evidence suggesting that vitamin D deficiency increases the risk

of diabetes mellitus [Hypponen et al., 2001; Pittas et al., 2007],

hypertension [Krause et al., 1998; Li et al., 2002; Judd et al., 2008],

malignancy [Martinez et al., 1996; Tangpricha et al., 2001; Chen

et al., 2009; Krishnan and Feldman, 2010], musculoskeletal

dysfunction [Glerup et al., 2000a; Pfeifer et al., 2002; Bischoff-

Ferrari et al., 2004a], infection [Wilkinson et al., 2000; Liu et al.,

2006], autoimmune disease [Munger et al., 2006], and all-cause

mortality [Dobnig et al., 2008; Melamed et al., 2008]. The first and

best characterized phenotype of vitamin D deficiency is the

development of skeletal disorders, notably rickets and osteomalacia.
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As the skeleton matures, the epiphyses and metaphyses fuse

resulting in cessation of longitudinal bone growth. From this point,

mineralization and bone turnover are employed to maintain skeletal

strength and integrity. Vitamin D deficiency in the adult skeleton

manifests as osteomalacia. Histologically, osteomalacia is char-

acterized by areas of unmineralized osteoid, which may be apparent

radiologically as Looser’s zones (pseudofractures) [Pettifor, 2005b].

The earliest descriptions of bony deformities consistent with rickets

are found in the ancient texts of Homer (900 BC) and the Roman

physician Soranus Ephesius (130 AD). Soranus described the classic

deformities of rickets in infants residing in both Rome and Greece

[Pettifor, 2005a].

The discovery of Vitamin D and its role in preventing rickets is

attributed to Elmer McCollum, a nutritional biologist at Johns

Hopkins, and John Howland, a pediatrician [McCollum et al., 1921;

Shipley et al., 1921; Howland, 1933]. The therapeutic use of cod liver

oil, early in the 20th century, led to a dramatic resolution of the

rachitic phenotype in affected individuals. With a decline in the

cases of rickets due to vitamin D deficiency, other forms of rickets

began to emerge; these were termed ‘‘vitamin D resistant rickets.’’

Characterization of the molecular basis for these disorders has

elucidated important steps in the regulation of vitamin D activation

and function. Pseudovitamin D deficiency rickets (PDDR) is an

autosomal recessive disorder characterized by impaired or absent

activity of the 25OHD 1-a hydroxylase, leading to impaired

conversion of 25OHD to 1,25(OH)2D [St-Arnaud et al., 1997;

Kitanaka et al., 1998]. Hereditary vitamin D-Resistant rickets

(HVDRR) is due to mutations in the vitamin D receptor [Hughes et al.,

1988]. Circulating 1,25(OH)2D levels are very high in this disease,

however they are essentially ineffective due to lack of a functional

VDR [Kristjansson et al., 1993]. X-linked hypophosphatemia (XLH)

is an X-linked genetic disorder that causes hypophosphatemia due

to decreased reabsorption of phosphate in the renal tubule

[DiMeglio, 2000]. Renal function is typically preserved and

1,25(OH)2D levels are either low or inappropriately normal given

the degree of hypophosphatemia [DiMeglio, 2000]. These mineral

ion and hormonal abnormalities in XLH are due to elevated

circulating levels of the phosphaturic hormone, fibroblast growth

factor 23 (FGF23) [Jonsson et al., 2003]. The genetic mutation is that

of an endopeptidase, PHEX [HYP-Consortium, 1995]; however, the

link between this mutation and the resultant phenotype has eluded

molecular characterization. In spite of this dramatic increase in our

knowledge over the past century, which is based on important

clinical and physiological observations, the exact role of vitamin D,

its active metabolite, and its receptor in the skeleton is still being

elucidated.

BASIC SCIENCE STUDIES OF VITAMIN D ACTION

The receptor-dependent actions of 1,25(OH)2D regulate the expres-

sion of bone matrix proteins and promote osteoclast differentiation

by inducing the expression of the ligand for the receptor activator of

NF-kB (RANK). In addition, 1,25(OH)2D has been shown to regulate

chondrocyte maturation and gene expression. While 1,25(OH)2D has

several actions that contribute to the regulation of skeletal and
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mineral ion homeostasis, identification of direct actions of

1,25(OH)2D on the skeleton remains an area of active investigation.

As discussed, our understanding of the role of vitamin D in

skeletal growth and maturation has been largely based on studies

aimed at identifying the pathophysiological basis for rickets and

osteomalacia in human and animal models. The availability of

genetically engineered mice has permitted in depth analyses of the

molecular basis for the phenotypes observed when vitamin D action

is impaired. Mice lacking a functional VDR phenocopy the human

disorder, HVDRR [Li et al., 1997]. They are normal at birth, but

develop abnormalities in mineral ion homeostasis due to impaired

intestinal calcium absorption. The increase in parathyroid hormone

(PTH) that ensues, in an effort to maintain normal calcium levels,

leads to hypophosphatemia due to PTH-dependent urinary

phosphate losses. The skeletal manifestations observed in both

mice and humans with VDR mutations, mimic those seen in vitamin

D deficiency [Thomas and Demay, 2000]. Rickets, characterized by

an expanded and hypomineralized growth plate is observed, as is

osteomalacia. However, preventing the development of abnormal

mineral ion homeostasis results in a histologically and biomecha-

nically normal skeleton in growing mice [Amling et al., 1999].

Similarly, parenteral calcium administration has been shown to heal

osteomalacia and rickets in children with VDR mutations [Balsan

et al., 1986]. Thus, in the presence of normal mineral ions, the

receptor dependent effects of 1,25(OH)2D are redundant. What other

factors are called in to play, to compensate for the absence of the

VDR, have not been completely elucidated. It has, however, been

demonstrated that in the absence of a functional VDR, osteoclas-

togenesis and RANK ligand synthesis in response to PTH is preserved

[Takeda et al., 1999].

Interestingly, when removed from potential endocrine and

paracrine signals and placed in culture, osteoblasts lacking the

VDR exhibit phenotypic differences from normal osteoblasts.

Calvarial osteoblasts lacking the VDR demonstrate an acceleration

in the onset of osteoblast differentiation in culture. This is

manifested by an earlier onset and increased magnitude of alkaline

phosphatase activity, as well as an increase in mineralized matrix

formation. In addition, the number of osteoblast colony forming

units is also increased [Sooy et al., 2005]. In contrast, bone marrow

stromal cells isolated from the VDR null mice demonstrate normal

osteoblast differentiation, but enhanced adipogenesis. When

cultured under adipogenic conditions, the expression of PPARg is

enhanced in the absence of the VDR, leading to an increase in the

number and size of adipocytes compared to cultures from wildtype

mice. Absence of the VDR results in enhanced expression of two

inhibitors of canonical Wnt signaling, DKK1 and SFRP2. No in vivo

evidence of enhanced adipogenesis of bone marrow stromal cells is

observed in the VDR null mice, suggesting that other paracrine

factors compensate for the lack of VDR in vivo [Cianferotti and

Demay, 2007]. Studies in normal murine calvarial osteoblasts

demonstrate that the actions of 1,25(OH)2D are dependent upon the

stage of osteoblast differentiation and duration of treatment [Owen

et al., 1990]. The expression of mRNAs encoding osteopontin

and matrix gla protein are induced by acute treatment with

1,25(OH)2D at all stages. However, chronic treatment impairs both

proliferation and differentiation of osteoblasts.
JOURNAL OF CELLULAR BIOCHEMISTRY



These studies raise the interesting question as to whether the

effects observed in VDR null mice are due to the absence of receptor

per se rather than lack of ligand-dependent receptor action. The

generation of mice lacking the enzyme that activates vitamin D by

1-a hydroxylation (Cyp27b1) revealed a skeletal phenotype that is

indistinguishable from that of mice lacking the VDR [Dardenne

et al., 2001]. Although restoration of normal mineral ion home-

ostasis corrects the skeletal abnormalities, normal growth is

observed only when the mice are treated with 1,25(OH)2D,

suggesting that the receptor dependent actions of this hormone

contribute to bone growth [Dardenne et al., 2004]. Interestingly,

overexpression of the VDR by mature osteoblasts leads to an

increase in both cortical and trabecular bone in vivo [Gardiner et al.,

2000].

The VDR is also expressed in chondrocytes and 1,25(OH)2D has

been shown to modulate gene expression and differentiation of

growth plate chondrocytes in vitro. However, studies in humans

with VDR mutations and in VDR null mice demonstrate that

normalization of mineral ion levels or prevention of abnormal

mineral ion homeostasis leads to a normal growth plate [Balsan

et al., 1986; Amling et al., 1999]. Investigations in VDR null mice

demonstrate that, within 2 days of the development of hyperpar-

athyroidism, an expansion in the hypertrophic chondrocyte layer is

observed [Donohue and Demay, 2002]. Although extracellular

calcium has been shown to promote expression of markers of

terminal chondrocyte differentiation [Chang et al., 2002], studies in

additional murine models of rickets, including the murine model for

the human disease XLH (hyp mouse), demonstrated that hypopho-

sphatemia is the underlying pathophysiologic basis for rickets

[Sabbagh et al., 2005]. Low circulating phosphate levels lead to

impaired apoptosis of hypertrophic chondrocytes, resulting in

expansion of the growth plate, characteristic of rickets. Phosphate

has been shown to induce apoptosis of avian chondrocytes in a dose

dependent manner [Mansfield et al., 1999; Adams et al., 2001;

Mansfield et al., 2001]. Further characterization of this programmed

cell death in primary murine chondrocyte cultures demonstrates

that phosphate treatment of hypertrophic chondrocytes activates

caspase-9, a mediator of the mitochondrial apoptotic pathway, in a

cell type and differentiation stage-specific manner. Analysis of the

growth plate phenotype of wildtype mice treated with a caspase-9

inhibitor confirms that activation of the mitochondrial apoptotic

pathway is critical for hypertrophic chondrocyte apoptosis in vivo,

demonstrating a role for the mitochondrial apoptotic pathway in

growth plate maturation in vivo.

While these investigations point to phosphate as a critical

regulator of growth plate maturation, the VDR also has important

paracrine effects in the growth plate. Targeted ablation of the VDR in

proliferating chondrocytes (using Col II-Cre) results in normal

growth plate morphology, associated with a transient increase in

bone volume prior to weaning. This latter observation was shown

to be secondary to a decrease in chondrocyte production of RANK

ligand, leading to a decrease in osteoclastogenesis, and was

accompanied by a decrease in VEGF expression, resulting in a

decrease in vascular invasion. An intriguing observation in these

mice was the presence of elevated circulating phosphate and

1,25(OH)2D levels prior to weaning. This was thought to be due to a
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decrease in FGF23 expression in osteoblasts, a direct consequence

of chondrocyte-specific VDR ablation, implicating an important

paracrine loop between the chondrocyte and the osteoblast/

osteocyte in the regulation of FGF23 expression as well as in the

regulation of vascular invasion [Masuyama et al., 2006]. Studies in

mice with chondrocyte-specific ablation of Cyp27b1, and thus

no local 1,25(OH)2D production, demonstrate that paracrine and

endocrine actions of locally produced hormone play a role in

maturation of the growth plate. Similar to the mice with

chondrocyte specific ablation of the VDR, mice lacking Cyp27b1

in chondrocytes have a decrease in RANK ligand and VEGF

expression. This was associated with an increase in the hypertrophic

chondrocyte zone associated with a delay in vascular invasion

during embryonic development and an increase in bone volume in

neonatal long bones due to a decrease in osteoclastogenesis [Naja

et al., 2009]. Similar to the mice with chondrocyte-specific ablation

of the VDR, circulating levels of FGF23 were significantly decreased

in these mice.

Treatment of cells with 1,25(OH)2D leads to rapid responses, such

as increases in intracellular calcium levels and activation of protein

kinase C. The former effects are not observed in osteoblasts lacking

the VDR, suggesting that they are receptor-dependent [Erben et al.,

2002]. In support of this hypothesis, VDR protein, as well as ligand

binding, has been shown in caveolae enriched plasma membranes

and is markedly reduced in membranes isolated from VDR knockout

mice [Huhtakangas et al., 2004]. These latter investigations

demonstrated co-localization of the VDR with caveolin-1; however,

other studies failed to show this co-localization. Rather, an

association between this latter protein and ERp60, a membrane

associated receptor implicated in the rapid actions of 1,25(OH)2D

was found [Boyan et al., 2006]. Thus, the contribution of ERp60 to

the rapid actions of 1,25(OH)2D, and the in vivo relevance of these

rapid effects have not yet been resolved.

CLINICAL SKELETAL EFFECTS OF VITAMIN D

In addition to its essential role in mineral ion absorption and skeletal

growth, vitamin D is critical for the maintenance of skeletal home-

ostasis. Vitamin D deficiency leads to decreased intestinal calcium

absorption, secondary hyperparathyroidism, hypophosphatemia

and increased bone turnover [Holick, 2007; Viljakainen et al.,

2009]. Altogether these alterations in mineral metabolism due to

vitamin D deficiency result in lower bone mineral density [Bischoff-

Ferrari et al., 2004b, 2009b] and an increased risk of bone loss or

fracture in both men and women [Bouillon et al., 2008; Cauley et al.,

2008; Ensrud et al., 2009; Cauley et al., 2010]. The serum 25OHD

level defining sufficiency has increased to >75 nmol/L (30 ng/ml)

[Adams and Hewison, 2010]. This is due to the association of

improved mineral absorption and bone mineral density with higher

circulating 25OHD levels and the epidemiologic data that higher

25OHD levels are associated with reduced risk of a number of

chronic illnesses and of overall mortality. Using this definition, both

children and adults are at high risk for vitamin D deficiency with

prevalence rates in the USA being as high as 72% [Looker et al.,

2002; Nesby-O’Dell et al., 2002; Gordon et al., 2004, 2008; Weng
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et al., 2007; Orwoll et al., 2009]. Populations that shield themselves

from solar exposure or who have pigmented skin are at increased

risk for vitamin D deficiency [Looker et al., 2002]. Some of these

groups may experience greater deleterious effects of low 25OHD

levels on bone mineral density [Araujo et al., 2009]. In addition to

these aforementioned effects in children and adults, there is

increasing data that maternal vitamin D deficiency can affect in

utero skeletal development. In a prospective cohort of 424 pregnant

women in England, mothers with vitamin D deficiency were more

likely to have fetuses with femoral bones that had rachitic features

on high resolution three-dimensional ultrasound, based on an

increase in distal metaphyseal cross-sectional area and a higher

femoral splaying index [Mahon et al., 2010].

Vitamin D has been studied as a potential treatment for

osteoporosis in both men and women [Chapuy et al., 1992; Ooms

et al., 1995; Dawson-Hughes et al., 1997; Vieth, 2004]. Since

treatment of vitamin D deficiency is associated with an increase in

bone mineral density due to mineralization of osteoid, it remains

unclear whether vitamin D has any effect on osteoporotic bone, or if

its benefits are a reflection of resolution of osteomalacia and

secondary hyperparathyroidism. Meta-analysis by Bischoff-Ferrari

et al. [2005] of seven clinical trials that included 9,820 patients,

suggests that a higher daily dose of vitamin D (700–800

international units (IU)), than that recommended by the Institute

of Medicine as of 2009, is required to achieve the serum 25OHD level

of 100 nmol/L (40 ng/ml), which is associated with 26% and 23%

reduction in hip and non-vertebral fracture risk, respectively. This

threshold 25OHD level and the daily vitamin D intake needed

to achieve fracture reduction may explain the overall lack of

anti-fracture efficacy of vitamin D observed in the Randomized

Evaluation of Calcium or Vitamin D (RECORD), Women’s Health

Initiative (WHI), and vitamin D Individual Patient Analysis of

Randomized Trials (DIPART) trials [Grant et al., 2005; Jackson et al.,

2006; DIPART-Group, 2010]. In the RECORD trial, 5,292 participants

were randomized to vitamin 800 IU, calcium 1,000 mg, vitamin D

plus calcium, or placebo for 3 years. The groups did not differ in

incidence of new fracture, however, the study vitamin D dose

resulted in a post-treatment mean 25OHD level of only 62 nmol/L

(25 ng/ml); based on the Bischoff-Ferrari et al. meta-analysis this

post-treatment 25OHD level may have been too low to achieve anti-

fracture efficacy [Bischoff-Ferrari et al., 2005; Grant et al., 2005]. In

the WHI, 36,282 women were randomized to calcium 1,000 mg with

vitamin D 400 IU or placebo for 7 years. While there was no overall

benefit in the treatment group, there was a 29% reduction in risk of

hip fracture in those individuals who adhered to the calcium

and vitamin D supplementation regimen [Jackson et al., 2006].

Consistent with this, the DIPART study, which examined data

from 68,517 patients in seven trials, demonstrated that vitamin D

given in doses of 400–800 IU/day is only effective in fracture

prevention when combined with calcium, and not when given as

monotherapy [DIPART-Group, 2010].

Low vitamin D levels may prevent patients from achieving the

maximal beneficial response to anti-resorptive medications used

to treat or prevent osteoporosis, although this detrimental effect is

not seen with the currently available anabolic agent, teriparatide

[Dawson-Hughes et al., 2007; Adami et al., 2009]. In one study that
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assessed 1,515 postmenopausal women receiving anti-resorptives

(alendronate, risedronate, and raloxifene), those patients with

25OHD below 50 nmol/L (20 ng/ml) were more likely to have smaller

annualized gains in bone mineral density and 1.7 times more likely

to have new fractures [Adami et al., 2009]. This potential negative

effect of vitamin D deficiency on anti-osteoporosis therapy is further

compounded by the high prevalence of low 25OHD levels in these

patients. Prevalence of 25OHD levels <50 nmol/L (20 ng/ml) and

<75 nmol/L (30 ng/ml) in patients either receiving osteoporosis

therapy or advice is as high as 30% and 70%, respectively [Holick

et al., 2005; Guardia et al., 2008].

Understanding the clinical benefits of vitamin D on the skeleton is

made more difficult by the following issues. Isolating the direct

effects of vitamin D on fracture reduction is challenging due to the

fact that vitamin D is often combined with calcium in clinical trials

[Chapuy et al., 1992; Dawson-Hughes et al., 1997; Bischoff-Ferrari

et al., 2005; Grant et al., 2005; Jackson et al., 2006; Avenell et al.,

2009]. Furthermore, it is difficult to distinguish the direct effects of

vitamin D on bone from its beneficial effects on muscle that result in

decreased falls, and thereby, fracture risk [Bischoff-Ferrari et al.,

2009a]. While, initially there was concern that plant-based

ergocalciferol was not as effective at increasing 25OHD levels as

animal-based cholecalciferol [Trang et al., 1998; Houghton and

Vieth, 2006], subsequent studies have shown that both formulations

are effective at treating vitamin D deficiency [Holick et al., 2008;

Pietras et al., 2009].

CONCLUSIONS

Investigations into the pathophysiological basis for rickets and

osteomalacia have led to a number of seminal discoveries in the past

century. The observation that rickets could be cured by sunlight and

by ingestion of fish oils led to the identification of the vitamin D pro-

hormone as a critical regulator of mineral ion homeostasis. While

supplementation with vitamin D effected a cure in the vast majority

of affected individuals, the identification and characterization of the

molecular defects in those resistant to this treatment elucidated the

molecular pathway involved in hormone activation and receptor-

dependent hormone action. Further investigations into the

pathophysiologic basis of rickets and osteomalacia associated with

renal phosphate wasting led to the identification of FGF23, an

important phosphaturic hormone secreted by osteocytes, special

cells of the osteoblast lineage which are thought to function as

skeletal mechanosensors. While studies in humans and animals with

impaired vitamin D action have demonstrated that the effect of

1,25(OH)2D and the VDR in the skeleton are largely redundant,

investigations in tissue-specific knockout and transgenic mice

continue to identify novel actions of the VDR and its ligand in the

skeleton. The increasing awareness of the ability of peripheral

tissues to activate 25OHD has led to a number of new fields

of investigation into the role of vitamin D and its receptor in

these ‘‘non-traditional’’ target tissues. In addition, it has led to the

development of guidelines for repletion of, not only the active

vitamin D metabolite, but also its pro-hormone, in patients with

chronic kidney disease [K/DOQI-Work-Group, 2003]. Lastly, the
JOURNAL OF CELLULAR BIOCHEMISTRY



data generated by clinical trials, examining the vitamin D intake and

circulating levels that are required for optimal skeletal health have

led to a reevaluation of the recommended daily intake of vitamin D

by the Institute of Medicine, which will likely result in the revision of

the current guidelines [National-Academy-of-Sciences, 2009].
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